首页 > 中学考试杂题 > 题目详情
在斜三角形ABC中,sinA=-cosBcosC且tanBtanC=1-根号3,则角A的值解:∠A=180°-∠B-∠C
题目内容:
在斜三角形ABC中,sinA=-cosBcosC且tanBtanC=1-根号3,则角A的值
解:∠A=180°-∠B-∠C
sinA=-cosBcosC
sinA=sin(∠B+∠C)=sinBcosC+cosBsinC=-cosBcosC
tanB+tanC=-1
tanBtanC=1-√3,
tan(B+C)=(tanB+tanC)/(1-tanBtanC)=-1/√3
B+C=150°
∠A=30°
我问的是为什么(sinBcosC+cosBsinC=-cosBcosC)?
又快又好加分.
在斜三角形ABC中,sinA=-cosBcosC且tanBtanC=1-根号3,则角A的值
解:∠A=180°-∠B-∠C
sinA=-cosBcosC
sinA=sin(∠B+∠C)=sinBcosC+cosBsinC=-cosBcosC
tanB+tanC=-1
tanBtanC=1-√3,
tan(B+C)=(tanB+tanC)/(1-tanBtanC)=-1/√3
B+C=150°
∠A=30°
我问的是为什么(sinBcosC+cosBsinC=-cosBcosC)?
又快又好加分.
解:∠A=180°-∠B-∠C
sinA=-cosBcosC
sinA=sin(∠B+∠C)=sinBcosC+cosBsinC=-cosBcosC
tanB+tanC=-1
tanBtanC=1-√3,
tan(B+C)=(tanB+tanC)/(1-tanBtanC)=-1/√3
B+C=150°
∠A=30°
我问的是为什么(sinBcosC+cosBsinC=-cosBcosC)?
又快又好加分.
本题链接: