首页 > 中学考试杂题 > 题目详情
如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , , 分别为, 的中点,点在线段上. (1)求证: 平面; (2)若直线与平面所成的角和直线与平面所成的角相等,求的值. 【答案】(1)证明见...
题目内容:
如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , , 分别为, 的中点,点在线段上.
(1)求证: 平面;
(2)若直线与平面所成的角和直线与平面所成的角相等,求的值.
【答案】(1)证明见解析;(2) .
【解析】试题分析:
(Ⅰ)在平行四边形中,由条件可得,进而可得。由侧面底面,得底面,故得,所以可证得平面.(Ⅱ)先证明平面平面,由面面平行的性质可得平面.(Ⅲ)建立空间直角坐标系,通过求出平面的法向量,根据线面角的向量公式可得。
试题解析:
(Ⅰ)证明:在平行四边形中,
∵, , ,
∴,
∴,
∵, 分别为, 的中点,
∴,
∴,
∵侧面底面,且,
∴底面,
又底面,
∴,
又, 平面, 平面,
∴平面.
(Ⅱ)证明:∵为的中点, 为的中点,
∴,
又平面, 平面,
∴平面,
同理平面,
又, 平面, 平面,
∴平面平面,
又平面,
∴平面.
(Ⅲ)【解析】
由底面, ,可得, , 两两垂直,
建立如图空间直角坐标系,
则, , , , , ,
所以, , ,
设,则,
∴, ,
易得平面的法向量,
设平面的法向量为,则:
由,得,
令,得,
∵直线与平面所成的角和此直线与平面所成的角相等,
∴,即,
∴,
解得或(舍去),
故.
点睛:用向量法确定空间中点的位置的方法
根据题意建立适当的空间直角坐标系,由条件确定有关点的坐标,运用共线向量用参数(参数的范围要事先确定)确定出未知点的坐标,根据向量的运算得到平面的法向量或直线的方向向量,根据所给的线面角(或二面角)的大小进行运算,进而求得参数的值,通过与事先确定的参数的范围进行比较,来判断参数的值是否符合题意,进而得出点是否存在的结论。
【题型】解答题
【结束】
21
如图,椭圆上的点到左焦点的距离最大值是,已知点在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)过原点且斜率为的直线交椭圆于、两点,其中在第一象限,它在轴上的射影为点,直线交椭圆于另一点.证明:对任意的,点恒在以线段为直径的圆内.
本题链接: