首页 > 中学考试杂题 > 题目详情
已知,函数在上是单调递增函数,则的取值范围是______. 【答案】 【解析】∵, ∴, 又函数在单调递增, ∴在上恒成立, 即在上恒成立。 又当时, , ∴。 又, ∴。 故实数的取值范围是。 答案...
题目内容:
已知,函数在上是单调递增函数,则的取值范围是______.
【答案】
【解析】∵,
∴,
又函数在单调递增,
∴在上恒成立,
即在上恒成立。
又当时, ,
∴。
又,
∴。
故实数的取值范围是。
答案:
点睛:对于导函数和函数单调性的关系要分清以下结论:
(1)当时,若,则在区间D上单调递增(减);
(2)若函数在区间D上单调递增(减),则在区间D上恒成立。即解题时可将函数单调性的问题转化为的问题,但此时不要忘记等号。
【题型】填空题
【结束】
19
某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是__________.
本题链接: