首页 > 中学考试杂题 > 题目详情
已知数集X={x1,x2,…,xn}(其中xi>0,i=1,2,…,n,n≥3),若对任意的xk∈X(k=1,2,…,n),都存在xi,xj∈X(xi≠xj),使得下列三组向量中恰有一组共线: ①向量...
题目内容:
已知数集X={x1,x2,…,xn}(其中xi>0,i=1,2,…,n,n≥3),若对任意的xk∈X(k=1,2,…,n),都存在xi,xj∈X(xi≠xj),使得下列三组向量中恰有一组共线:
①向量(xi,xk)与向量(xk,xj);②向量(xi,xj)与向量(xj,xk);③向量(xk,xi)与向量(xi,xj),则称X具有性质P。例如{1,2,4}具有性质P。
(1)若{1,3,x)具有性质P,则x的取值为________;
(2)若数集{1,3,x1,x2}具有性质P,则x1+x2的最大值与最小值之积为________。
本题链接: