首页 > 中学考试杂题 > 题目详情
在 中, 所对的边分别为,且. (1)求角的大小; (2)若, , 为的中点,求的长. 【答案】(1);(2). 【解析】试题分析:(1)由已知,利用正弦定理可得a2=b2+c2-2b,再利用余弦定理...
题目内容:
在 中, 所对的边分别为,且.
(1)求角的大小;
(2)若, , 为的中点,求的长.
【答案】(1);(2).
【解析】试题分析:(1)由已知,利用正弦定理可得a2=b2+c2-2b,再利用余弦定理即可得出cosA,结合A的范围即可得解A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
试题解析:
(1)因为asin A=(b-c)sin B+(c-b)·sin C,
由正弦定理得a2=(b-c)b+(c-b)c,
整理得a2=b2+c2-2bc,
由余弦定理得cos A===,
因为A∈(0,π),所以A=.
(2)由cos B=,得sin B===,
所以cos C=cos[π-(A+B)]=-cos(A+B)=-=-,
由正弦定理得b===2,
所以CD=AC=1,
在△BCD中,由余弦定理得BD2=()2+12-2×1××=13,
所以BD=.
【题型】解答题
【结束】
21
已知函数在处的切线经过点
(1)讨论函数的单调性;
(2)若不等式恒成立,求实数的取值范围.
本题链接: