首页 > 中学考试杂题 > 题目详情
如图:在四棱锥中,底面为菱形,且, 底面, , , 是上点,且平面. (1)求证: ;(2)求三棱锥的体积. 【答案】(1)见解析;(2). 【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据...
题目内容:
如图:在四棱锥中,底面为菱形,且, 底面,
, , 是上点,且平面.
(1)求证: ;(2)求三棱锥的体积.
【答案】(1)见解析;(2).
【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据底面得,再根据线面垂直判定定理得面即可得结果(2)记与的交点为,则BD 为高,三角形POE为底,根据锥体体积公式求体积
试题解析:(1)面
(2)记与的交点为,连接
平面
在中: , , ,
在中: , ,则,即,
则
【题型】解答题
【结束】
21
已知椭圆: 的离心率,且其的短轴长等于.
(1)求椭圆的标准方程;
(2)如图,记圆: ,过定点作相互垂直的直线和,直线(斜率)与圆和椭圆分别交于、两点,直线与圆和椭圆分别交于、两点,若与面积之比等于,求直线的方程.
本题链接: