首页 > 中学考试杂题 > 题目详情
无穷数列 ,若存在正整数,使得该数列由个互不相同的实数组成,且对于任意的正整数,中至少有一个等于,则称数列具有性质.集合. (1)若,,判断数列是否具有性质; (2)数列具有性质,且,求的值; (3)...
题目内容:
无穷数列 ,若存在正整数,使得该数列由个互不相同的实数组成,且对于任意的正整数,中至少有一个等于,则称数列具有性质.集合.
(1)若,,判断数列是否具有性质;
(2)数列具有性质,且,求的值;
(3)数列具有性质,对于中的任意元素,为第个满足的项,记 ,证明:“数列具有性质”的充要条件为“数列是周期为的周期数列,且每个周期均包含个不同实数”.
本题链接: