首页 > 中学考试杂题 > 题目详情
已知曲线在点处的切线为,其中. (Ⅰ)求直线的方程; (Ⅱ)求证:直线和曲线一定有两个不同的公共点. 【答案】(Ⅰ) 直线 ;(Ⅱ)见解析. 【解析】试题分析:(I)求出函数的导数,分别求出,,即可求...
题目内容:
已知曲线在点处的切线为,其中.
(Ⅰ)求直线的方程;
(Ⅱ)求证:直线和曲线一定有两个不同的公共点.
【答案】(Ⅰ) 直线 ;(Ⅱ)见解析.
【解析】试题分析:(I)求出函数的导数,分别求出,,即可求得直线的方程;(Ⅱ)联立直线与曲线的方程,令,利用导数研究函数的单调性,即可判断函数零点的个数,从而可证直线和曲线一定有两个不同的公共点.
试题解析:(I)因为
所以直线的斜率
所以直线的方程为
化简得到
(Ⅱ)把曲线和直线的方程联立得
所以
所以
令
所以,
令,得到得,
当时,的变化情况如下表
0 | 0 | ||||
极大 | 极小 |
因为时,,而
(或者说:时,),
所以在上有一个零点
而时,,所以在上只有一个零点
又在上没有零点
所以只有两个不同的零点,即直线和曲线有两个不同的公共点.
【题型】解答题
【结束】
18
已知函数,其中常数.
(Ⅰ)求的单调区间;
(Ⅱ)如果函数没有零点,求实数的取值范围.
本题链接: