首页 > 中学考试杂题 > 题目详情
如图,四棱柱的底面为菱形, , , 为中点. (1)求证: 平面; (2)若底面,且直线与平面所成线面角的正弦值为,求的长. 【答案】(1)证明见解析;(2)2. 【解析】试题分析:(1)设为的中点,...
题目内容:
如图,四棱柱的底面为菱形, , , 为中点.
(1)求证: 平面;
(2)若底面,且直线与平面所成线面角的正弦值为,求的长.
【答案】(1)证明见解析;(2)2.
【解析】试题分析:(1)设为的中点,根据平几知识可得四边形是平行四边形,即得,再根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面一个法向量,根据向量数量积求向量夹角,再根据线面角与向量夹角互余关系列等式,解得的长.
试题解析:(1)证明:设为的中点,连
因为,又,所以 ,
所以四边形是平行四边形,
所以
又平面, 平面,
所以平面.
(2)因为是菱形,且,
所以是等边三角形
取中点,则,
因为平面,
所以,
建立如图的空间直角坐标系,令,
则, , , ,
, , ,
设平面的一个法向量为,
则且,
取,设直线与平面所成角为,
则,
解得,故线段的长为2.
【题型】解答题
【结束】
20
椭圆:的左、右焦点分别为、,若椭圆过点.
(1)求椭圆的方程;
(2)若为椭圆的左、右顶点, ()为椭圆上一动点,设直线分别交直线: 于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.
本题链接: