首页 > 数学 > 题目详情
如图,在三角形ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF;A
题目内容:
如图,在三角形ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD到F,使DF=CD,连接AF;AG.
(1)按要求补全图形,并标注字母;(已做出,)
(2)AF与AG的大小如何?证明你的结论.(疑问)
因为等级关系,图片传卟上去,优质解答
相等 因为是三角形 ABC 所以你可以设 三角形ABC为等边三角形 . 所以AB=AC所以AD=AE 又因为等边三角形 所以 AB边上的中线 CD 等于 AC边上的中线 即 CD=BE 即 CD=BE=EG=FD 然后你就可以得出 三角形ADF与三角...
(1)按要求补全图形,并标注字母;(已做出,)
(2)AF与AG的大小如何?证明你的结论.(疑问)
因为等级关系,图片传卟上去,
优质解答
本题链接: