首页 > 数学 > 题目详情
y=cos[(arcsinx)/2]求导
题目内容:
y=cos[(arcsinx)/2]求导优质解答
先对外函数y = cos(u)求导,再乘以内函数u = arcsinx / 2的导数
y = cos(arcsinx / 2)
y' = -sin(arcsinx / 2) × 1/2*1/√(1-x²)
= [-sin(arcsinx / 2)]/[2√(1-x²)] - 追问:
- 就这样就?
- 追答:
- 额,进一步化简就是 = [√(1-x) - √(x+1)]/[4√(1-x^2)]
- 追问:
- sin[(arcsinx)/2]怎样化简
- 追答:
- 设y = arcsinx siny = x cosy = √(1-x^2) cosy = 1-2sin^2(y/2) √(1-x^2) = 1-2sin^2(y/2) sin^2(y/2) = [1-√(1-x^2)] / 2 sin(y/2) = √[1-√(1-x^2)] / √2 sin(arcsinx / 2) = √[1-√(1-x^2)] / √2,这个很难再化简了
优质解答
y = cos(arcsinx / 2)
y' = -sin(arcsinx / 2) × 1/2*1/√(1-x²)
= [-sin(arcsinx / 2)]/[2√(1-x²)]
- 追问:
- 就这样就?
- 追答:
- 额,进一步化简就是 = [√(1-x) - √(x+1)]/[4√(1-x^2)]
- 追问:
- sin[(arcsinx)/2]怎样化简
- 追答:
- 设y = arcsinx siny = x cosy = √(1-x^2) cosy = 1-2sin^2(y/2) √(1-x^2) = 1-2sin^2(y/2) sin^2(y/2) = [1-√(1-x^2)] / 2 sin(y/2) = √[1-√(1-x^2)] / √2 sin(arcsinx / 2) = √[1-√(1-x^2)] / √2,这个很难再化简了
本题链接: