首页 > 数学 > 题目详情
已知PA⊥平面ABCD,四边形ABCD为矩形,PA=AD,M、N分别是AB、PC的中点,求证:(1)MN∥平面PAD;(2)平面PMC⊥平面PDC.
题目内容:
已知PA⊥平面ABCD,四边形ABCD为矩形,PA=AD,M、N分别是AB、PC的中点,求证:
(1)MN∥平面PAD;
(2)平面PMC⊥平面PDC.优质解答
证明:(1)设PD的中点为Q,连接AQ、NQ,
由N为PC的中点知QN∥DC且QN=1 2
DC,
又ABCD是矩形,∴DC∥AB,DC=1 2
AB,
又M是AB的中点,∴QN∥AM,QN=AM,
∴AMNQ是平行四边形,
∴MN∥AQ,而AQ⊂平面PAD,NM⊄平面PAD,
∴MN∥平面PAD;
(2)∵PA=AD,∴AE⊥PD,
又∵PA⊥平面ABCD,CD⊂平面ABCD,
∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD,
∴CD⊥AQ,∵PD∩CD=D,∴AQ⊥平面PCD,
∵MN∥AQ,∴MN⊥平面PCD,
又MN⊂平面PMC,
∴平面PMC⊥平面PCD.
(1)MN∥平面PAD;
(2)平面PMC⊥平面PDC.
优质解答
由N为PC的中点知QN∥DC且QN=
1 |
2 |
又ABCD是矩形,∴DC∥AB,DC=
1 |
2 |
又M是AB的中点,∴QN∥AM,QN=AM,
∴AMNQ是平行四边形,
∴MN∥AQ,而AQ⊂平面PAD,NM⊄平面PAD,
∴MN∥平面PAD;
(2)∵PA=AD,∴AE⊥PD,
又∵PA⊥平面ABCD,CD⊂平面ABCD,
∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD,
∴CD⊥AQ,∵PD∩CD=D,∴AQ⊥平面PCD,
∵MN∥AQ,∴MN⊥平面PCD,
又MN⊂平面PMC,
∴平面PMC⊥平面PCD.
本题链接: