如图,在三角形ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CFAE=CF,D为BF中点求AE:AF
2020-10-21 160次 反馈错误 加入收藏 正确率 : 100%
题目内容:
如图,在三角形ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF AE=CF,D为BF中点 求AE:AF
优质解答
过F做FG‖AB,交CE于G
因为D是BF中点
AE=CF
所以FG/AE=FC/AC=AE/(AE+AF)
即AF/AE=AE/(AE+AF)
AE^2=AEAF+AF^2
(AE/AF)^2-(AE/AF)-1=0
AE/AF=(1+√5)/2
本题链接: