首页 > 数学 > 题目详情
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G. (1)求证:D
题目内容:
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.优质解答
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵E、F分别为AB、CD的中点,
∴DF=1 2
DC,BE=1 2
AB,
∴DF∥BE,DF=BE,
∴四边形DEBF为平行四边形,
∴DE∥BF;
(2)∵AG∥BD,
∴∠G=∠DBC=90°,
∴△DBC为直角三角形,
又∵F为边CD的中点.
∴BF=1 2
DC=DF,
又∵四边形DEBF为平行四边形,
∴四边形DEBF是菱形.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.
优质解答
∴AB∥CD,AB=CD,
∵E、F分别为AB、CD的中点,
∴DF=
1 |
2 |
1 |
2 |
∴DF∥BE,DF=BE,
∴四边形DEBF为平行四边形,
∴DE∥BF;
(2)∵AG∥BD,
∴∠G=∠DBC=90°,
∴△DBC为直角三角形,
又∵F为边CD的中点.
∴BF=
1 |
2 |
又∵四边形DEBF为平行四边形,
∴四边形DEBF是菱形.
本题链接: