首页 > 数学 > 题目详情
如图所示,正方形ABCD的BC边上有一点E,∠DAE的平分线交CD于F,试用旋转的思想方法说明AE=DF+BE.
题目内容:
如图所示,正方形ABCD的BC边上有一点E,∠DAE的平分线交CD于F,试用旋转的思想方法说明AE=DF+BE.
优质解答
如右图所示,将△ADF顺时针旋转90°得△ABF′;
则有∠3=∠1,∠AFD=∠F′,F′B=FD,(3分)
∵∠F′AE=∠3+∠BAE,
又∵四边形ABCD为正方形,
∴AB∥CD,
∴∠AFD=∠FAB,(4分)
∵∠FAB=∠2+∠BAE,
∴∠AFD=∠2+∠BAE,
又∵∠DAE的平分线交CD于F,(5分)
∴∠1=∠2,(6分)
∴∠3=∠2,
∴∠AFD=∠3+∠BAE,
∴∠F′=∠3+∠BAE,(7分)
∴∠F′AE=∠F′,
∴EA=EF′=DF+BE.(9分)
优质解答
则有∠3=∠1,∠AFD=∠F′,F′B=FD,(3分)
∵∠F′AE=∠3+∠BAE,
又∵四边形ABCD为正方形,
∴AB∥CD,
∴∠AFD=∠FAB,(4分)
∵∠FAB=∠2+∠BAE,
∴∠AFD=∠2+∠BAE,
又∵∠DAE的平分线交CD于F,(5分)
∴∠1=∠2,(6分)
∴∠3=∠2,
∴∠AFD=∠3+∠BAE,
∴∠F′=∠3+∠BAE,(7分)
∴∠F′AE=∠F′,
∴EA=EF′=DF+BE.(9分)
本题链接: