首页 > 数学 > 题目详情
在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=12DC,DC=3BC,E为PD中点.
题目内容:
在四棱锥P-ABCD中,△PBC为正三角形,AB⊥平面PBC,AB∥CD,AB=1 2
DC,DC=3
BC,E为PD中点.
(1)求证:AE∥平面PBC;
(2)求证:AE⊥平面PDC;
(3)求平面PAD与平面PBC所成锐二面角的大小.优质解答
(1)证明:取PC的中点为F,连接EF,则EF为△PDC的中位线,即EF平行且等于1 2
DC.
又∵AB∥CD,
∴AB平行且等于EF,
∴AE∥BF,
又∵BF⊂平面PBC,
∴四边形AEFB为矩形,
∴AE∥平面PBC.(3分)
(2)证明:∵△PBC为正三角形,F为PC的中点,
∴BF⊥PC
又EF⊥PC,EF∩BF=F,
∴PC⊥平面AEFB,AE⊥PC;
由(1)知AE⊥EF,EF∩PC=F,
∴AE⊥平面PDC.(7分)
(3)延长CB交DA于B/,连接PB/,设BC=a,
∵AB=1 2
DC,
∴BB/=BP=a,取B/P的中点为H,连接AH,BH,则BH⊥B/P,由三垂线定理知,AH⊥B/P,
∴∠AHB为平面PAD与平面PBC所成锐二面角的平面角.(9分)
在Rt△AHB中,AB=3
2
a,AH=a,∴sin∠AHB=3
2
,∠AHB=π 3
∴平面PAD与平面PBC所成锐二面角为π 3
.(12分)
1 |
2 |
3 |
(1)求证:AE∥平面PBC;
(2)求证:AE⊥平面PDC;
(3)求平面PAD与平面PBC所成锐二面角的大小.
优质解答
1 |
2 |
又∵AB∥CD,
∴AB平行且等于EF,
∴AE∥BF,
又∵BF⊂平面PBC,
∴四边形AEFB为矩形,
∴AE∥平面PBC.(3分)
(2)证明:∵△PBC为正三角形,F为PC的中点,
∴BF⊥PC
又EF⊥PC,EF∩BF=F,
∴PC⊥平面AEFB,AE⊥PC;
由(1)知AE⊥EF,EF∩PC=F,
∴AE⊥平面PDC.(7分)
(3)延长CB交DA于B/,连接PB/,设BC=a,
∵AB=
1 |
2 |
∴BB/=BP=a,取B/P的中点为H,连接AH,BH,则BH⊥B/P,由三垂线定理知,AH⊥B/P,
∴∠AHB为平面PAD与平面PBC所成锐二面角的平面角.(9分)
在Rt△AHB中,AB=
| ||
2 |
| ||
2 |
π |
3 |
∴平面PAD与平面PBC所成锐二面角为
π |
3 |
本题链接: