首页 > 数学 > 题目详情
已知双曲线C1与椭圆C2:x2/49+y2/36=1有公共的焦点,且双曲线C1经过点M(-4,2倍根已知双曲线C1与椭圆
题目内容:
已知双曲线C1与椭圆C2:x2/49+y2/36=1有公共的焦点,且双曲线C1经过点M(-4,2倍根
已知双曲线C1与椭圆C2:x^2/49+y^2/36=1有公共的焦点且双曲线C1经过点M(﹣4,2√7/3)求双曲线方程优质解答
焦点相同,在x轴上
设双曲线:x^2/a^2-y^2/b^2=1
椭圆的c^2=49-36=13,
即a^2+b^2=13
将M代人,
16/a^2-28/9b^2=1
解得a^2=9,b^2=4
所以方程为x^2/9-y^2/4=1
已知双曲线C1与椭圆C2:x^2/49+y^2/36=1有公共的焦点且双曲线C1经过点M(﹣4,2√7/3)求双曲线方程
优质解答
设双曲线:x^2/a^2-y^2/b^2=1
椭圆的c^2=49-36=13,
即a^2+b^2=13
将M代人,
16/a^2-28/9b^2=1
解得a^2=9,b^2=4
所以方程为x^2/9-y^2/4=1
本题链接: