首页 > 数学 > 题目详情
P是长轴在x轴上的椭圆x2a2+y2b2=1上的点F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|•|PF
题目内容:
P是长轴在x轴上的椭圆x2 a2
+y2 b2
=1上的点F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|•|PF2|的最大值与最小值之差一定是( )
A. 1
B. a2
C. b2
D. c2优质解答
由题意,设|PF1|=x,∵|PF1|+|PF2|=2a,∴|PF2|=2a-x∴|PF1|•|PF2|=x(2a-x)=-x2+2ax=-(x-a)2+a2,∵a-c≤x≤a+c,∴x=a-c时,y=-x2+2ax取最小值b2,x=a时,y=-x2+2ax取最大值为a2,∴|PF1|•|PF2|的最大值和最...
x2 |
a2 |
y2 |
b2 |
A. 1
B. a2
C. b2
D. c2
优质解答
本题链接: