首页 > 数学 > 题目详情
过圆:x2+y2=r2外一点P(x0,y0)引此圆的两条切线,切点为A、B,则直线AB的方程为______.
题目内容:
过圆:x2+y2=r2外一点P(x0,y0)引此圆的两条切线,切点为A、B,则直线AB的方程为______.优质解答
设A(x1,)、B(x2,y2),
则设P(x,y)为过A的切线上一点,可得AP
=(x-x1,y-y1)
∵AP
•OA
=0,得x1(x-x1)+y1(y-y1)=0,化简得x1x+y1y=x12+y12
∵点A在圆x2+y2=r2上,可得x12+y12=r2
∴经过点A的圆的切线为x1x+y1y=r2,
同理可得经过点B的圆的切线为x2x+y2y=r2.
又∵点P(x0,y0)是两切线的交点,
∴可得x0x1+y0y1=r2,说明点A(x1,y1)在直线x0x+y0y=r2上;
同理x0x2+y0y2=r2,说明点B(x2,y2)在直线x0x+y0y=r2上
因此可得直线AB方程为:x0x+y0y=r2
故答案为:x0x+y0y=r2
优质解答
则设P(x,y)为过A的切线上一点,可得
AP |
∵
AP |
OA |
∵点A在圆x2+y2=r2上,可得x12+y12=r2
∴经过点A的圆的切线为x1x+y1y=r2,
同理可得经过点B的圆的切线为x2x+y2y=r2.
又∵点P(x0,y0)是两切线的交点,
∴可得x0x1+y0y1=r2,说明点A(x1,y1)在直线x0x+y0y=r2上;
同理x0x2+y0y2=r2,说明点B(x2,y2)在直线x0x+y0y=r2上
因此可得直线AB方程为:x0x+y0y=r2
故答案为:x0x+y0y=r2
本题链接: