首页 > 数学 > 题目详情
【已知函数f(x)=loga(x+2)-loga(2-x),a>0且a≠1.(Ⅰ)求函数f(x)的定义域;(Ⅱ)判断f(x)的奇偶性并予以证明.】
题目内容:
已知函数f(x)=loga(x+2)-loga(2-x),a>0且a≠1.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判断f(x)的奇偶性并予以证明.优质解答
(Ⅰ)由题得x+2>0 2−x>0
,
所以函数f(x)的定义域为{x|-2<x<2}.
(Ⅱ)函数f(x)为奇函数,
证明:由(Ⅰ)知函数f(x)的定义域关于原点对称,
且f(-x)=loga(-x+2)-loga(2+x)=-loga(2+x)+loga(2-x)=-[loga(2+x)-loga(2-x)]=-f(x)
所以函数f(x)为奇函数.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判断f(x)的奇偶性并予以证明.
优质解答
|
所以函数f(x)的定义域为{x|-2<x<2}.
(Ⅱ)函数f(x)为奇函数,
证明:由(Ⅰ)知函数f(x)的定义域关于原点对称,
且f(-x)=loga(-x+2)-loga(2+x)=-loga(2+x)+loga(2-x)=-[loga(2+x)-loga(2-x)]=-f(x)
所以函数f(x)为奇函数.
本题链接: