首页 > 数学 > 题目详情
已知函数f(x)=2cosxsin(x+π3)−3sin2x+sinxcosx(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若x∈[−π2,π2]时,求f(x)的单调递减区间.
题目内容:
已知函数f(x)=2cosxsin(x+π 3
)−3
sin2x+sinxcosx
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若x∈[−π 2
,π 2
]时,求f(x)的单调递减区间.优质解答
(Ⅰ)f(x)=2cosx(1 2
sinx+3
2
cosx)−3
sin2x+sinxcosx
=2sinxcosx+3
(cos2x−sin2x)
=sin2x+3
cos2x
=2sin(2x+π 3
)
∴T=π
(Ⅱ)f(x)的减区间为2kπ+π 2
≤2x+π 3
≤2kπ+3π 2
,kπ+π 12
≤x≤kπ+7π 12
又∵x∈[−π 2
,−π 12
],∴−π 2
≤x≤−5π 12
或π 12
≤x≤π 2
即f(x)在[−π 2
,−5π 12
]和在[π 12
,π 2
]上单调递减.
π |
3 |
3 |
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若x∈[−
π |
2 |
π |
2 |
优质解答
1 |
2 |
| ||
2 |
3 |
=2sinxcosx+
3 |
=sin2x+
3 |
=2sin(2x+
π |
3 |
∴T=π
(Ⅱ)f(x)的减区间为2kπ+
π |
2 |
π |
3 |
3π |
2 |
π |
12 |
7π |
12 |
又∵x∈[−
π |
2 |
π |
12 |
π |
2 |
5π |
12 |
π |
12 |
π |
2 |
即f(x)在[−
π |
2 |
5π |
12 |
π |
12 |
π |
2 |
本题链接: