首页 > 数学 > 题目详情
已知f(x)为二次函数,且f(x+1)+f(x-1)=2x^2-4x.(1)求f(x)得表达式 (2)当x∈[1/2,2
题目内容:
已知f(x)为二次函数,且f(x+1)+f(x-1)=2x^2-4x.(1)求f(x)得表达式 (2)当x∈[1/2,2]时求f(2^x)的最大
(2)当x∈[1/2,2]时求f(2^x)的最大值与最小值
特别是第二问!优质解答
问题一:
1)求f(x)的解析式
设二次函数f(x)=ax²+bx+c
∵ f(x)=ax²+bx+c,根据题意得到:
f(x+1)=a(x+1)²+b(x+1)+c
=a(x²+2x+1)+b(x+1)+c
=ax²+2ax+a+bx+b+c
=ax²+(2a+b)x+a+b+c
f(x-1)=a(x-1)²+b(x-1)+c
=a(x²-2x+1)+b(x-1)+c
=ax²-2ax+a+bx-b+c
=ax²+(b-2a)x+a-b+c
∴ f(x+1)+ f(x-1)=ax²+(2a+b)x+(a+b+c)+ax²+(b-2a)x+(a-b+c)
=2ax²+(2a+b+b-2a)x+{(a+b+c)+(a-b+c)}
=2ax²+2bx+2(a+c)
∵ f(x+1)+ f(x-1)=2x²-4x
∴ f(x+1)+ f(x-1)=2x²-4x=2ax²+2bx+2(a+c) ,那么,可得到方程组:
2a=2
2b=-4
2(a+c)=0
解方程得到:a=1,b=-2,c=-1
∴ 代入f(x)=ax²+bx+c中得到:
f(x)=x²-2x-1
问题二:
2) 当x∈[1/2,2] 时,求f(2^x)的最大值与最小值
设g(x)=2^x
∵ x∈[1/2,2]
∴ g(x)=2^x 在x∈[1/2,2] 范围内的值域为:
指数函数g(x)=2^x ,其图像是过点(0,1),并且为递增函数,
g(x)=2^x 的最小值是:x=1/2 时,最小值=√2 【√(),表示()中开2次方,√2表示,2开方】
g(x)=2^x 的最大值是:x=2 时,最大值=4
g(x)=2^x 的值域为 [√2,4 ]
∵ f(x)=x²-2x-1函数图像是开口向上的抛物线,根据题意得到:
f(x)=x²-2x-1函数对称轴为x=1,
当x>1时,f(x)为增函数,
当x
(2)当x∈[1/2,2]时求f(2^x)的最大值与最小值
特别是第二问!
优质解答
1)求f(x)的解析式
设二次函数f(x)=ax²+bx+c
∵ f(x)=ax²+bx+c,根据题意得到:
f(x+1)=a(x+1)²+b(x+1)+c
=a(x²+2x+1)+b(x+1)+c
=ax²+2ax+a+bx+b+c
=ax²+(2a+b)x+a+b+c
f(x-1)=a(x-1)²+b(x-1)+c
=a(x²-2x+1)+b(x-1)+c
=ax²-2ax+a+bx-b+c
=ax²+(b-2a)x+a-b+c
∴ f(x+1)+ f(x-1)=ax²+(2a+b)x+(a+b+c)+ax²+(b-2a)x+(a-b+c)
=2ax²+(2a+b+b-2a)x+{(a+b+c)+(a-b+c)}
=2ax²+2bx+2(a+c)
∵ f(x+1)+ f(x-1)=2x²-4x
∴ f(x+1)+ f(x-1)=2x²-4x=2ax²+2bx+2(a+c) ,那么,可得到方程组:
2a=2
2b=-4
2(a+c)=0
解方程得到:a=1,b=-2,c=-1
∴ 代入f(x)=ax²+bx+c中得到:
f(x)=x²-2x-1
问题二:
2) 当x∈[1/2,2] 时,求f(2^x)的最大值与最小值
设g(x)=2^x
∵ x∈[1/2,2]
∴ g(x)=2^x 在x∈[1/2,2] 范围内的值域为:
指数函数g(x)=2^x ,其图像是过点(0,1),并且为递增函数,
g(x)=2^x 的最小值是:x=1/2 时,最小值=√2 【√(),表示()中开2次方,√2表示,2开方】
g(x)=2^x 的最大值是:x=2 时,最大值=4
g(x)=2^x 的值域为 [√2,4 ]
∵ f(x)=x²-2x-1函数图像是开口向上的抛物线,根据题意得到:
f(x)=x²-2x-1函数对称轴为x=1,
当x>1时,f(x)为增函数,
当x
本题链接: