首页 > 数学 > 题目详情
已知函数f(x)=x-ax2-lnx(a>0).(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为-2,求a的值
题目内容:
已知函数f(x)=x-ax2-lnx(a>0).
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为-2,求a的值以及切线方程;
(2)若f(x)是单调函数,求a的取值范围.优质解答
(1)f′(x)=1-2ax-1 x
.…(2分)
由题设,f′(1)=-2a=-2,a=1,
此时f(1)=0,切线方程为y=-2(x-1),即2x+y-2=0.…(5分)
(2)f′(x)=-2ax2−x+1 x
,
令△=1-8a.
当a≥1 8
时,△≤0,f′(x)≤0,f(x)在(0,+∞)单调递减.…(10分)
当0<a<1 8
时,△>0,方程2ax2-x+1=0有两个不相等的正根x1,x2,
不妨设x1<x2,
则当x∈(0,x1)∪(x2,+∞)时,f′(x)<0,当x∈(x1,x2)时,f′(x)>0,
这时f(x)不是单调函数.
综上,a的取值范围是[1 8
,+∞).…(12分)
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为-2,求a的值以及切线方程;
(2)若f(x)是单调函数,求a的取值范围.
优质解答
1 |
x |
由题设,f′(1)=-2a=-2,a=1,
此时f(1)=0,切线方程为y=-2(x-1),即2x+y-2=0.…(5分)
(2)f′(x)=-
2ax2−x+1 |
x |
令△=1-8a.
当a≥
1 |
8 |
当0<a<
1 |
8 |
不妨设x1<x2,
则当x∈(0,x1)∪(x2,+∞)时,f′(x)<0,当x∈(x1,x2)时,f′(x)>0,
这时f(x)不是单调函数.
综上,a的取值范围是[
1 |
8 |
本题链接: