首页 > 数学 > 题目详情
设函数f(x)=4x^3+ax+2,曲线y=f(x)在点P(0,2)处切线斜率-12(1)、求a的值(2)函数f(x)在区间[-3,2]最大值和最小值
题目内容:
设函数f(x)=4x^3+ax+2,曲线y=f(x)在点P(0,2)处切线斜率-12 (1)、求a的值
(2)函数f(x)在区间[-3,2]最大值和最小值优质解答
f'(x)=12x^2+a
曲线y=f(x)在点P(0,2)处切线斜率-12 所以有:
f'(0)=a=-12 即:a=-12
(2)函数f(x)在区间[-3,2]最大值和最小值
f'(x)=12x^2-12,当x=1,或x=-1时f(x)=0
f''(x)=24x
当x=1,时,f''(1)=24>0 所以有最小值,f(1)=-6
当x=-1时,f''(-1)=-24
(2)函数f(x)在区间[-3,2]最大值和最小值
优质解答
曲线y=f(x)在点P(0,2)处切线斜率-12 所以有:
f'(0)=a=-12 即:a=-12
(2)函数f(x)在区间[-3,2]最大值和最小值
f'(x)=12x^2-12,当x=1,或x=-1时f(x)=0
f''(x)=24x
当x=1,时,f''(1)=24>0 所以有最小值,f(1)=-6
当x=-1时,f''(-1)=-24
本题链接: