首页 > 数学 > 题目详情
已知函数f(x)=10x−10−x10x+10−x,判断f(x)的奇偶性和单调性.
题目内容:
已知函数f(x)=10x−10−x 10x+10−x
,判断f(x)的奇偶性和单调性.优质解答
(1)已知函数f(x)=10x−10−x 10x+10−x
=102x−1 102x+1
,x∈R,
f(x)=10−x−10x 10−x+10x
=−102x−1 102x+1
=−f(x),x∈R
∴f(x)是奇函数
(2)f(x)=102x−1 102x+1
,x∈R,设x1,x2∈(-∞,+∞),且x1<x2,
则f(x1) −f(x2) =102x1−1 102x1+1
−102x2−1 102x2+1
=2(102x1−102x2) (102x1+1)(102x2+1)
=2(100x1−100x2) (102x1+1)(102x2+1)
,
因为x1<x2,所以100x1<100x2,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)为增函数.
10x−10−x |
10x+10−x |
优质解答
10x−10−x |
10x+10−x |
102x−1 |
102x+1 |
f(x)=
10−x−10x |
10−x+10x |
102x−1 |
102x+1 |
∴f(x)是奇函数
(2)f(x)=
102x−1 |
102x+1 |
则f(x1) −f(x2) =
102x1−1 |
102x1+1 |
102x2−1 |
102x2+1 |
2(102x1−102x2) |
(102x1+1)(102x2+1) |
2(100x1−100x2) |
(102x1+1)(102x2+1) |
因为x1<x2,所以100x1<100x2,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)为增函数.
本题链接: