首页 > 数学 > 题目详情
已知函数f(x)=loga[(x-1)/(x+1)](a>0,且a不等于1),1.求f(x)的定义域,并讨论f(X)在一
题目内容:
已知函数f(x)=loga[(x-1)/(x+1)](a>0,且a不等于1),1.求f(x)的定义域,并讨论f(X)在一到正无穷内的单调性,2.令g(x)=1+logax,当x属于[m,n]且在一到正无穷内时(m优质解答
1、f(x)=loga[(x-1)/(x+1)](a>0,且a不等于1)
若此时有意义,则(x-1)/(x+1)>0 ,求得:x1 即定义域.
在一到正无穷内
f(x)=loga[(x-1)/(x+1)]=ln[(x-1)/(x+1)]/lna
f(x)'=1/lna乘以[(x+1)/(x-1)]乘以[2/(x+1)^2] (a>0,且a不等于1)
整理得:f(x)'=1/lna乘以[2/(x^2-1)]
[2/(x^2-1)]>0,当 a0,单调递增
2、由已知可知g(x)可定义为单调递减函数,在[m,n]上
所以g(x)'
优质解答
若此时有意义,则(x-1)/(x+1)>0 ,求得:x1 即定义域.
在一到正无穷内
f(x)=loga[(x-1)/(x+1)]=ln[(x-1)/(x+1)]/lna
f(x)'=1/lna乘以[(x+1)/(x-1)]乘以[2/(x+1)^2] (a>0,且a不等于1)
整理得:f(x)'=1/lna乘以[2/(x^2-1)]
[2/(x^2-1)]>0,当 a0,单调递增
2、由已知可知g(x)可定义为单调递减函数,在[m,n]上
所以g(x)'
本题链接: