首页 > 数学 > 题目详情
用数学归纳法证明:-1+3-5+…+(-1)n(2n-1)=(-1)nn.
题目内容:
用数学归纳法证明:-1+3-5+…+(-1)n(2n-1)=(-1)nn.优质解答
证明:(1)当n=1时,左边=-1,右边=-1,
∴左边=右边
(2)假设n=k时等式成立,即:-1+3-5+…+(-1)k(2k-1)=(-1)kk;
当n=k+1时,等式左边=-1+3-5+…+(-1)k(2k-1)+(-1)k+1(2k+1)
=(-1)kk+(-1)k+1(2k+1)
=(-1)k+1.(-k+2k+1)
=(-1)k+1(k+1).
这就是说,n=k+1时,等式成立.
综上(1)(2)可知:-1+3-5+…+(-1)n(2n-1)=(-1)nn对于任意的正整数成立.
优质解答
∴左边=右边
(2)假设n=k时等式成立,即:-1+3-5+…+(-1)k(2k-1)=(-1)kk;
当n=k+1时,等式左边=-1+3-5+…+(-1)k(2k-1)+(-1)k+1(2k+1)
=(-1)kk+(-1)k+1(2k+1)
=(-1)k+1.(-k+2k+1)
=(-1)k+1(k+1).
这就是说,n=k+1时,等式成立.
综上(1)(2)可知:-1+3-5+…+(-1)n(2n-1)=(-1)nn对于任意的正整数成立.
本题链接: