首页 > 数学 > 题目详情
斯坦纳-雷米欧司定理的图不是反证法的图 是证明一:设三角形ABC,角B、角C的平分线是BE、CD 作∠BEF=∠BCD;
题目内容:
斯坦纳-雷米欧司定理的图
不是反证法的图 是
证明一:
设三角形ABC,角B、角C的平分线是BE、CD
作∠BEF=∠BCD;并使EF=BC
∵BE=DC
∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF
设∠ABE=∠EBC=α,∠ACD=∠DCB=β
∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β);
∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β);
∴∠FBC=∠CEF
∵2α+2β优质解答
雷米欧司1840年写信给斯坦纳时提出了这个问题,下面这种证明是1842年就出现的,速度惊人啊,对于这样一个难题来说.A proof using SSA:F.G.Hesse (1842)C/ \/ \F___________E_____D\ / \ / \ \ / G \\ / / \ \\ / / \ \\...
不是反证法的图 是
证明一:
设三角形ABC,角B、角C的平分线是BE、CD
作∠BEF=∠BCD;并使EF=BC
∵BE=DC
∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF
设∠ABE=∠EBC=α,∠ACD=∠DCB=β
∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β);
∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β);
∴∠FBC=∠CEF
∵2α+2β
优质解答
本题链接: