【在三角形ABC中角A=90P是AC的中点,PD垂直BC垂足为DBC=10DC=4求AB的长用勾股定理做】
2022-04-18 43次 反馈错误 加入收藏 正确率 : 100%
题目内容:
在三角形ABC中 角A=90 P是AC的中点,PD垂直BC 垂足为D BC=10 DC=4 求AB的长
用勾股定理做
优质解答
在BC上取点E,使EP//AC因为角A=90°,PD垂直BC那么三角形PDC相似于三角形EDP (相似的条件就不多说了)DC/DP=DP/EDDP^2=DC*ED因为BC=10 DC=4, P是AC的中点那么PE=AB/2,EC=BC/2=5CD=4,ED=EC-CD=5-4=1DP=2EP=根号5...
本题链接: