首页 > 数学 > 题目详情
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB
题目内容:
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.
(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°-1 2
∠FCM.优质解答
证明:(1)连接MD,∵点E是DC的中点,ME⊥DC,∴MD=MC,又∵AD=CF,MF=MA,∴△AMD≌△FMC,∴∠MAD=∠MFC=120°,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∴∠MAB=30°,在Rt△AMB中,∠MAB=30°,∴BM=12AM,即AM=2...
(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°-
1 |
2 |
优质解答
本题链接: