首页 > 数学 > 题目详情
已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.
题目内容:
已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.
优质解答
延长CB到G,使BG=DF,连接AG,
∵四边形ABCD为正方形,
∴AB=AD,AB∥CD,∠D=∠ABC=90°,
∴∠5=∠BAF=∠1+∠3,∠ABG=180°-∠ABC=90°,
在△ABG和△ADG中,
AB=AD ∠ABG=∠ADF=90° BG=DF
,
∴△ABG≌△ADG(SAS),
∴∠G=∠5,∠1=∠2=∠4,
∴∠G=∠5=∠1+∠3=∠4+∠3=∠EAG,
∴AE=GE=BE+GB=BE+DF.
优质解答
∵四边形ABCD为正方形,
∴AB=AD,AB∥CD,∠D=∠ABC=90°,
∴∠5=∠BAF=∠1+∠3,∠ABG=180°-∠ABC=90°,
在△ABG和△ADG中,
|
∴△ABG≌△ADG(SAS),
∴∠G=∠5,∠1=∠2=∠4,
∴∠G=∠5=∠1+∠3=∠4+∠3=∠EAG,
∴AE=GE=BE+GB=BE+DF.
本题链接: