首页 > 数学 > 题目详情
【如图,MN∥PQ,直线l分别交MN、PQ于点A、C,同旁内角的平分线AB、CB相交于点B,AD、CD相交于点D.试证明四边形ABCD是矩形.】
题目内容:
如图,MN∥PQ,直线l分别交MN、PQ于点A、C,同旁内角的平分线AB、CB相交于点B,AD、CD相交于点D.试证明四边形ABCD是矩形.
优质解答
证明:∵MN∥PQ,
∴∠MAC=∠ACQ、∠ACP=∠NAC,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC=1 2
∠MAC、∠DCA=1 2
∠ACQ,
又∵∠MAC=∠ACQ,
∴∠BAC=∠DCA,
∴AB∥CD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA=1 2
∠ACP、∠DAC=1 2
∠NAC,
又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴AD∥CB,
又∵AB∥CD,
∴四边形ABCD平行四边形,
∵∠BAC=1 2
∠MAC,∠ACB=1 2
∠ACP,
又∵∠MAC+∠ACP=180°,
∴∠BAC+∠ACB=90°,
∴∠ABC=90°,
∴平行四边形ABCD是矩形.
优质解答
∴∠MAC=∠ACQ、∠ACP=∠NAC,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC=
1 |
2 |
1 |
2 |
又∵∠MAC=∠ACQ,
∴∠BAC=∠DCA,
∴AB∥CD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA=
1 |
2 |
1 |
2 |
又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴AD∥CB,
又∵AB∥CD,
∴四边形ABCD平行四边形,
∵∠BAC=
1 |
2 |
1 |
2 |
又∵∠MAC+∠ACP=180°,
∴∠BAC+∠ACB=90°,
∴∠ABC=90°,
∴平行四边形ABCD是矩形.
本题链接: