首页 > 数学 > 题目详情
运用平方差公式计算(3+1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)^是乘方
题目内容:
运用平方差公式计算(3+1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)
^是乘方优质解答
(3+1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)
=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)/2
=(3^4-1)(3^4+1)(3^8+1)...(3^2n+1)/2
……
=(3^4n-1)/2
^是乘方
优质解答
=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)/2
=(3^4-1)(3^4+1)(3^8+1)...(3^2n+1)/2
……
=(3^4n-1)/2
本题链接: