首页 > 数学 > 题目详情
用平方差公式解(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)在前面加一个(x—1)\(x—1)怎么解,用平方差公式
题目内容:
用平方差公式解
(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)
在前面加一个(x—1)\(x—1)
怎么解,用平方差公式优质解答
{(x-1)/(x-1)}*(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)
={(x^2-1)/(x-1)}*(x^2+1)(x^4+1)(x^8+1)(x^16+1)
={(x^4-1)/(x-1)}*(x^4+1)(x^8+1)(x^16+1)
={(x^8-1)/(x-1)}*(x^8+1)(x^16+1)
={(x^16-1)/(x-1)}*(x^16+1)
=(x^32-1)/(x-1)
(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)
在前面加一个(x—1)\(x—1)
怎么解,用平方差公式
优质解答
={(x^2-1)/(x-1)}*(x^2+1)(x^4+1)(x^8+1)(x^16+1)
={(x^4-1)/(x-1)}*(x^4+1)(x^8+1)(x^16+1)
={(x^8-1)/(x-1)}*(x^8+1)(x^16+1)
={(x^16-1)/(x-1)}*(x^16+1)
=(x^32-1)/(x-1)
本题链接: