首页 > 数学 > 题目详情
曲面法向量方向余弦cosa=(-fx)/[(1+fx^2+fy^2)^(1/2)]cosb=(-fy)/[(1+fx^2+fy^2)^(1/2)]cosv=(1)/[(1+fx^2+fy^2)^(1/
题目内容:
曲面法向量方向余弦
cosa=(-fx)/[(1+fx^2+fy^2)^(1/2)]
cosb=(-fy)/[(1+fx^2+fy^2)^(1/2)]
cosv=(1)/[(1+fx^2+fy^2)^(1/2)]
为什么有个负号 X轴 Y轴那优质解答
曲面方程 F(x,y,z)=0 的一个法向量可以为 n = { ∂F/∂x,∂F/∂y,∂F/∂z}特别的,若曲面方程能表示成 F(x,y,z)=z-f(x,y)=0 那么法向量可以为 n = ±{ -∂f/∂x,-∂f/&...
cosa=(-fx)/[(1+fx^2+fy^2)^(1/2)]
cosb=(-fy)/[(1+fx^2+fy^2)^(1/2)]
cosv=(1)/[(1+fx^2+fy^2)^(1/2)]
为什么有个负号 X轴 Y轴那
优质解答
本题链接: