首页 > 数学 > 题目详情
请用向量证明,三角形同比分点所连成的三角形的重心和原三角形的重心重合
题目内容:
请用向量证明,三角形同比分点所连成的三角形的重心和原三角形的重心重合优质解答
设BD :DC = CE :EA = AF :FB = γ
根据矢量加法有 矢量BD + 矢量CE + 矢量AF = (γ/(1 + γ)) (矢量BC + 矢量CA + 矢量AB) = (γ/(1 + γ)) * 0 = 0
设 O 为△ABC的重心,有 矢量OA + 矢量OB + 矢量OC = 0
而 矢量OD = 矢量OB + 矢量BD
矢量OE = 矢量OC + 矢量CE
矢量OF = 矢量OA + 矢量AF
所以
矢量OD + 矢量OE + 矢量OF
= (矢量OB + 矢量BD) + (矢量OC + 矢量CE) + (矢量OA + 矢量AF)
= (矢量OA + 矢量OB + 矢量OC)+ (矢量BD + 矢量CE + 矢量AF)
= 0 + 0 = 0
故 O也是△DEF的重心.问题得证.
注:这里用到一个定理:
O是三角形的重心的充要条件是矢量OA+矢量OB+矢量OC=0
优质解答
根据矢量加法有 矢量BD + 矢量CE + 矢量AF = (γ/(1 + γ)) (矢量BC + 矢量CA + 矢量AB) = (γ/(1 + γ)) * 0 = 0
设 O 为△ABC的重心,有 矢量OA + 矢量OB + 矢量OC = 0
而 矢量OD = 矢量OB + 矢量BD
矢量OE = 矢量OC + 矢量CE
矢量OF = 矢量OA + 矢量AF
所以
矢量OD + 矢量OE + 矢量OF
= (矢量OB + 矢量BD) + (矢量OC + 矢量CE) + (矢量OA + 矢量AF)
= (矢量OA + 矢量OB + 矢量OC)+ (矢量BD + 矢量CE + 矢量AF)
= 0 + 0 = 0
故 O也是△DEF的重心.问题得证.
注:这里用到一个定理:
O是三角形的重心的充要条件是矢量OA+矢量OB+矢量OC=0
本题链接: