首页 > 数学 > 题目详情
已知椭圆C:X^2/a^2+y^2/b^2=1 (a>b>0)的上顶点为A,左右焦点为F1,F2,且椭圆过P(4/3,b
题目内容:
已知椭圆C:X^2/a^2+y^2/b^2=1 (a>b>0)的上顶点为A,左右焦点为F1,F2,且椭圆过P(4/3,b/3)
以AP为直径的圆恰好过F2
若动直线l与椭圆C有且只有一个公共点,在x轴上是否存在两定点,使其到直线l的距离之积为定值?若存在,求两定点坐标;若不存在,请说明理由
我已求出C:X^2/2+y^2=1优质解答
(1)因为椭圆过点P(4/3,b/3),所以16/9a2+1/9=1,解得a2=2,又以AP为直径的圆恰好过右焦点F2.所以AF2垂直于F2P,即-b/c*(b/3)/[4/3-c]=-1,b^2=c(4-3c).而b^2=a^2-c^2=2...
以AP为直径的圆恰好过F2
若动直线l与椭圆C有且只有一个公共点,在x轴上是否存在两定点,使其到直线l的距离之积为定值?若存在,求两定点坐标;若不存在,请说明理由
我已求出C:X^2/2+y^2=1
优质解答
本题链接: