首页 > 数学 > 题目详情
设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,过F1的直线与椭圆交与AB两点,且向量
题目内容:
设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,过F1的直线与椭圆交与AB两点,
且向量AB*向量AF2=0,|向量AB|=|向量AF2|,则椭圆的离心率为
A.(根号2)/2 B.(根号3)/2 C.根号6-根号3 D.根号6-根号2
求详解优质解答
选C向量AB*向量AF2=0可得到AB⊥AF2|向量AB|=|向量AF2|可得到AB=AF2所以三角形ABF是等腰直角三角形设AB=K,则AF2=K,BF2=根号2*k利用椭圆性质BF1=2a-BF2=2a-根号2*kAF1=AB-BF1=K-(2a-根号2*k)=(1+根号2)k-2a再次利用椭...
且向量AB*向量AF2=0,|向量AB|=|向量AF2|,则椭圆的离心率为
A.(根号2)/2 B.(根号3)/2 C.根号6-根号3 D.根号6-根号2
求详解
优质解答
本题链接: