【已知过抛物线y^2=4X的焦点F的直线交抛物线于AB两点,过原点O作OM向量,使OM向量垂直AB向量,垂足为M,求点M的轨迹方程】
2021-01-29 123次 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知过抛物线y^2=4X的焦点F的直线交抛物线于AB两点,过原点O作OM向量,使OM向量垂直AB向量,垂足为M,求点M的轨迹方程
优质解答
假设OF的中点为N,F为焦点,连接NM,因为三角型MOF为直角三角型,并且他的斜边OF保持为1不变,所以他的中线为1/2不变,(直角三角形的中线为斜边的一半),所以M点的轨迹是以N为圆心的圆,方程是 (X-1/2)^2+Y^2=1/4
本题链接: