首页 > 数学 > 题目详情
在△abc中,ab=ac,∠a=36°,线段ab的垂直平分线叫ab与d,叫ac于e,连接be求证∠cbe=36°
题目内容:
在△abc中,ab=ac,∠a=36°,线段ab的垂直平分线叫ab与d ,叫ac于e,连接be求证∠cbe=36°优质解答
思路:要证∠cbe=36°可知∠abe=36°
即△abe为等腰三角形,又de为线段ab的垂直平分线,
所以△abe为等腰三角形.
证明:∵ de为线段ab的垂直平分线
∴ ae=be
∴ △abe为等腰三角形
∴ ∠abe=∠a=36°
又∵ab=ac
∴ ∠abc=∠acb=(180°-36°)/2=72°
∴ ∠cbe=∠abc-∠abe=36°
证必.
优质解答
即△abe为等腰三角形,又de为线段ab的垂直平分线,
所以△abe为等腰三角形.
证明:∵ de为线段ab的垂直平分线
∴ ae=be
∴ △abe为等腰三角形
∴ ∠abe=∠a=36°
又∵ab=ac
∴ ∠abc=∠acb=(180°-36°)/2=72°
∴ ∠cbe=∠abc-∠abe=36°
证必.
本题链接: