首页 > 数学 > 题目详情
已知函数f(x)=[1-根号2sin(2x-π/4)]/cosx 1)求F(X)的定义域 2)已知函数f(x)=[1-根
题目内容:
已知函数f(x)=[1-根号2sin(2x-π/4)]/cosx 1)求F(X)的定义域 2)
已知函数f(x)=[1-根号2sin(2x-π/4)]/cosx 1)求F(X)的定义域 2)设x是第四象限的角,求F(x)的值优质解答
f(x) = {1-√2sin(2x-π/4)}/cosx
= {1-(√2sin2xcosπ/4-cos2xsinπ/4)}/cosx
= {1-(sin2x-cos2x)}/cosx
= {1-sin2x+cos2x}/cosx
= {1-2sinxcosx+2cos^2x-1}/cosx
= {-2sinxcosx+2cos^2x}/cosx
= 2(cosx-sinx)
要使函数有意义,则必须要求sin(2x-π/4)≥0且cosx≠0,
所以要求2kπ≤2x-π/4≤2kπ+π,(k∈Z)且x≠kπ +π/2,(k∈Z)
即kπ+π/8≤x≤kπ+5π/8且x≠kπ +π/2,(k∈Z),所以f(x)的定义域为 [kπ+π/8,kπ +π/2)∪(kπ +π/2,kπ+5π/8] (k∈Z) - 追答:
- 解:(1)要使函数有意义,则必须要求sin(2x-π/4)≥0且cosx≠0,
所以要求2kπ≤2x-π/4≤2kπ+π,(k∈Z)且x≠kπ +π/2,(k∈Z)
即kπ+π/8≤x≤kπ+5π/8且x≠kπ +π/2,(k∈Z),
所以f(x)的定义域为 [kπ+π/8,kπ +π/2)∪(kπ +π/2,kπ+5π/8] (k∈Z)
(2)f(x) = {1-√2sin(2x-π/4)}/cosx
= {1-(√2sin2xcosπ/4-cos2xsinπ/4)}/cosx
= {1-(sin2x-cos2x)}/cosx
= {1-sin2x+cos2x}/cosx
= {1-2sinxcosx+2cos^2x-1}/cosx
= {-2sinxcosx+2cos^2x}/cosx
= 2(cosx-sinx)
- 追问:
- 为什么sin(2x-∏/4)≥0
- 追答:
- 不好意思啊,第一题我修正一下:
(1)∵依题意,有cosx≠0
∴解得x≠kp+ π\x09/2 ,
∴f(x)的定义域为{x|x∈R,且x≠kp+ π\x09/2 ,k∈Z
- 追答:
- 刚开始打字的时候把式子弄反了,第二小问发现了,修正了,忘了修正第一小问了。抱歉
- 追答:
- 希望可以帮到你,对你有帮助,还望您认可一下我的解答!
已知函数f(x)=[1-根号2sin(2x-π/4)]/cosx 1)求F(X)的定义域 2)设x是第四象限的角,求F(x)的值
优质解答
= {1-(√2sin2xcosπ/4-cos2xsinπ/4)}/cosx
= {1-(sin2x-cos2x)}/cosx
= {1-sin2x+cos2x}/cosx
= {1-2sinxcosx+2cos^2x-1}/cosx
= {-2sinxcosx+2cos^2x}/cosx
= 2(cosx-sinx)
要使函数有意义,则必须要求sin(2x-π/4)≥0且cosx≠0,
所以要求2kπ≤2x-π/4≤2kπ+π,(k∈Z)且x≠kπ +π/2,(k∈Z)
即kπ+π/8≤x≤kπ+5π/8且x≠kπ +π/2,(k∈Z),所以f(x)的定义域为 [kπ+π/8,kπ +π/2)∪(kπ +π/2,kπ+5π/8] (k∈Z)
- 追答:
- 解:(1)要使函数有意义,则必须要求sin(2x-π/4)≥0且cosx≠0,
所以要求2kπ≤2x-π/4≤2kπ+π,(k∈Z)且x≠kπ +π/2,(k∈Z)
即kπ+π/8≤x≤kπ+5π/8且x≠kπ +π/2,(k∈Z),
所以f(x)的定义域为 [kπ+π/8,kπ +π/2)∪(kπ +π/2,kπ+5π/8] (k∈Z)
(2)f(x) = {1-√2sin(2x-π/4)}/cosx
= {1-(√2sin2xcosπ/4-cos2xsinπ/4)}/cosx
= {1-(sin2x-cos2x)}/cosx
= {1-sin2x+cos2x}/cosx
= {1-2sinxcosx+2cos^2x-1}/cosx
= {-2sinxcosx+2cos^2x}/cosx
= 2(cosx-sinx)
- 追问:
- 为什么sin(2x-∏/4)≥0
- 追答:
- 不好意思啊,第一题我修正一下:
(1)∵依题意,有cosx≠0
∴解得x≠kp+ π\x09/2 ,
∴f(x)的定义域为{x|x∈R,且x≠kp+ π\x09/2 ,k∈Z
- 追答:
- 刚开始打字的时候把式子弄反了,第二小问发现了,修正了,忘了修正第一小问了。抱歉
- 追答:
- 希望可以帮到你,对你有帮助,还望您认可一下我的解答!
本题链接: