首页 > 数学 > 题目详情
如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE. (1)求证:A
题目内容:
如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.优质解答
(1)证明:∵AD⊥平面ABE,AD∥BC
∴BC⊥平面ABE,则AE⊥BC
又∵BF⊥平面ACE,∴AE⊥BF
∵BC∩BF=B,
∴AE⊥平面BCE,且BE⊂平面BCE,∴AE⊥BE
(2)过E点作EH⊥AB,∵AD⊥平面ABE,∴AD⊥EH,
∴EH⊥平面ABCD,
∵AE=EB=2,∴AB=22
,EH=2
,
∴VD−AEC=VE−ADC=1 3
×22
×2
=4 3
(3)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN,
∵AM=2MB,∴CN=1 3
CE
∵MG∥AE,MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE
同理可证,GN∥平面ADE,
∵MG∩GN=G,∴平面MGN∥平面ADE
又∵MN⊂平面MGN,∴MN∥平面ADE,
∴N点为线段CE上靠近C点的一个三等分点
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
优质解答
∴BC⊥平面ABE,则AE⊥BC
又∵BF⊥平面ACE,∴AE⊥BF
∵BC∩BF=B,
∴AE⊥平面BCE,且BE⊂平面BCE,∴AE⊥BE
(2)过E点作EH⊥AB,∵AD⊥平面ABE,∴AD⊥EH,
∴EH⊥平面ABCD,
∵AE=EB=2,∴AB=2
2 |
2 |
∴VD−AEC=VE−ADC=
1 |
3 |
2 |
2 |
4 |
3 |
(3)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN,
∵AM=2MB,∴CN=
1 |
3 |
∵MG∥AE,MG⊄平面ADE,AE⊂平面ADE,∴MG∥平面ADE
同理可证,GN∥平面ADE,
∵MG∩GN=G,∴平面MGN∥平面ADE
又∵MN⊂平面MGN,∴MN∥平面ADE,
∴N点为线段CE上靠近C点的一个三等分点
本题链接: