首页 > 数学 > 题目详情
数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证:(1)数列{Sn/n}是等比数列(2)Sn+1=4an
题目内容:
数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证:(1)数列{Sn/n}是等比数列
(2)Sn+1=4an优质解答
证明: (1) 注意到:a(n+1)=S(n+1)-S(n) 代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2 又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列...
(2)Sn+1=4an
优质解答
本题链接: