首页 > 数学 > 题目详情
如图,在△ABC中,点D是边BC的中点,DE⊥AC,DF垂直AB,垂足分别是E,F,且BF=CE.(1)求证DE=DF
题目内容:
如图,在△ABC中,点D是边BC的中点,DE⊥AC,DF垂直AB,垂足分别是E,F,且BF=CE.(1)求证DE=DF .
(2)当角1=90°时,试判断四边形AFDE是怎样的四边形,并证明你的结论
优质解答
1) 因为 BD=CD BF=CE 角BFD=角CED=90 根据HL RT△BFD全等于RT△CED 则 DF=DE
2)未能标清角1在哪 但只能是 A 或 EDF 则AFDE 为正方形 三个角为直角 是矩形 邻边相等的矩形是正方形 - 追问:
- 是角A
- 追答:
- 一样 四边形 有三个角为直角 则第四个角为直角 所以是矩形 邻边相等的矩形是正方形
(2)当角1=90°时,试判断四边形AFDE是怎样的四边形,并证明你的结论
优质解答
2)未能标清角1在哪 但只能是 A 或 EDF 则AFDE 为正方形 三个角为直角 是矩形 邻边相等的矩形是正方形
- 追问:
- 是角A
- 追答:
- 一样 四边形 有三个角为直角 则第四个角为直角 所以是矩形 邻边相等的矩形是正方形
本题链接: