已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.
2020-11-16 136次 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.
优质解答
证明:如图,过点E作EG⊥BC于G,过点M作MH⊥CD于H,∵四边形ABCD是正方形,∴EG=MH,EG⊥MH,∴∠1+∠3=90°,∵EF⊥MN,∴∠2+∠3=90°,∴∠1=∠2,∵在△EFG和△MNH中,∠1=∠2EG=MH∠EGF=∠MHN=90°,∴△EF...
本题链接: