首页 > 数学 > 题目详情
如图,已知在△ABC中,点D、E分别在AB、AC上,且AD•AB=AE•AC,CD与BE相交于点O.(1)求证:△AEB∽△ADC;(2)求证:BOCO=DOEO.
题目内容:
如图,已知在△ABC中,点D、E分别在AB、AC上,且AD•AB=AE•AC,CD与BE相交于点O.
(1)求证:△AEB∽△ADC;
(2)求证:BO CO
=DO EO
.优质解答
证明:(1)∵AD•AB=AE•AC,
∴AB AC
=AE AD
,
又∵∠EAB=∠DAC,
∴△AEB∽△ADC;
(2)∵△AEB∽△ADC;
∴∠DBO=∠ECO,
又∵∠DOB=∠EOC,
∴△BOD∽△COE,
∴BO CO
=DO EO
.
(1)求证:△AEB∽△ADC;
(2)求证:
BO |
CO |
DO |
EO |
优质解答
∴
AB |
AC |
AE |
AD |
又∵∠EAB=∠DAC,
∴△AEB∽△ADC;
(2)∵△AEB∽△ADC;
∴∠DBO=∠ECO,
又∵∠DOB=∠EOC,
∴△BOD∽△COE,
∴
BO |
CO |
DO |
EO |
本题链接: