首页 > 数学 > 题目详情
求证:若函数f(x)满足f(a-x0=f(x-a),f(b-x)=f(x-b),则f(x)是周期函数周期为2(a-b).a≠0,b≠0,a≠b.
题目内容:
求证:若函数f(x)满足f(a-x0=f(x-a),f(b-x)=f(x-b),则f(x)是周期函数周期为2(a-b).a≠0,b≠0,a≠b.优质解答
数学函数那样才是1个周期? 2017-10-29
优质解答
本题链接: