首页 > 其它 > 题目详情
椭圆右焦点为F 过F的直线L与椭圆交A B 两点 L倾角为60° 向量AF=2向量BF 求椭圆离心率 当AB=15/4
题目内容:
椭圆右焦点为F 过F的直线L与椭圆交A B 两点 L倾角为60° 向量AF=2向量BF 求椭圆离心率 当AB=15/4 求椭圆方
椭圆右焦点为F 过F的直线L与椭圆交A B 两点 L倾角为60° 向量AF=2向量BF 求:(1)椭圆离心率 (2)当AB=15/4 求椭圆方程优质解答
好么,解着压力有点大……(1)用常规方法解也是可以的,不过在这里推荐使用椭圆的第二定义,即椭圆上一点的焦半径比改点到准线距离恒等于离心率作图,由图像可知B点在上,A点在下.作出准线l,然后作AC、BD垂直于l,所以AC...
椭圆右焦点为F 过F的直线L与椭圆交A B 两点 L倾角为60° 向量AF=2向量BF 求:(1)椭圆离心率 (2)当AB=15/4 求椭圆方程
优质解答
本题链接: