数列难题组1.设数列{an}满足:a1+a2/2+a3/3+a4/4……+aan/n=n^2-2n-2 求数列{an}的通项公式2.已知等差数列前三项为2,4,6前n项和为Sn,S50=2550求1/s1
https://www.ouer.net/chuzhongshuxue/fdr2.html - 2022-09-19 15:35:34 - 中学数学试题关于数列的几道题1.两个等差数列,它们的前n项和之比为5n+3/2n-1,则这两个数列的第9项之比是()2.一个等比数列{an}中,a1+a4=133 a2+a3=70 求这个数列的通项公式.3.已知a
https://www.ouer.net/chuzhongshuxue/s4r9.html - 2022-10-15 13:33:50 - 中学数学试题设正数列{an}的前n项之和是bn,数列{bn}的前n项之积是cn,若bn+cn=1(1)求a1,a2,a3,a4(2)猜想数列{an}的通项公式(3)求数列{an}的前n项和S.正数列{an}的前n项之和是
https://www.ouer.net/chuzhongshuxue/fzx9.html - 2022-09-18 21:20:24 - 中学数学试题若a、b、c成等比数列;a,b+4,c成等差数列;a,b+4,c+32又成等比数列,求这三个数..因为a、b、c成等比数列所以b^2=ac.(1)因为a,b+4,c成等差数列所以2b+8=a+c.(2)
https://www.ouer.net/chuzhongshuxue/zmuk.html - 2022-05-14 15:22:14 - 中学数学试题函数f(x)的定义域为R,数列{an}满足an=f(an-1)(n∈N*且n≥2).(Ⅰ)若数列{an}是等差数列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k为非零常数,n∈N*
https://www.ouer.net/zati/h9sh.html - 2022-06-22 00:09:45 - 中学考试杂题数列{an}的前n项和为Sn=2n+q,bn=lgan,已知{bn}为等差数列.(1)求q;(2)求数列{anbn}的前n项和Tn..(1)∵数列{an}的前n项和为Sn=2n+q,bn=lgan,{bn
https://www.ouer.net/chuzhongshuxue/us80.html - 2022-10-20 15:28:16 - 中学数学试题已知公差不为零的等差数列{an}中,a1=1.且a1.a3.a7成等比数列,① 求数列{an}的通项公式.②、设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn.请把第二问的过程写的详细清楚些,
https://www.ouer.net/chuzhongshuxue/brdm.html - 2022-09-13 08:57:27 - 中学数学试题已知数列{an}的前n项和为Sn=n2+2n+3.(1)求数列{an}的通项公式;(2)求数列{Sn}前5项和..(1)因为数列{an}的前n项和Sn=n2+2n+3,所以当n≥2时,an=Sn-Sn-
https://www.ouer.net/chuzhongshuxue/fmc6.html - 2022-09-25 08:19:51 - 中学数学试题已知数列{an}的前n项和为Sn,且Sn=n²+2n,(1)数列{an}的通项公式(2)数列{bn}中,b1=1,bn=a(bn-1)(n≥2),求数列{bn}的通项公式!.
https://www.ouer.net/chuzhongshuxue/r2ed.html - 2022-10-07 19:24:54 - 中学数学试题关于数列的问题1.在等差数列{an}中,若a6+a9+a12+a15=34,求a20.2.在等差数列{an}中,前10项和是前5项和的4倍,求a1:d=_____.3.在等差数列{an}中,S10-310
https://www.ouer.net/chuzhongshuxue/xfk5.html - 2022-11-11 11:00:11 - 中学数学试题等差数列问题:在等差数列{an}中,a4+a7=24 a5-a8=2(1)求数列{an}通项公式 (2)若存在n(n∈N+),使数列{an}中相邻两项的乘积anan+1为负数,求n值.a4+a7=24
https://www.ouer.net/chuzhongshuxue/x7k8.html - 2022-11-15 13:37:34 - 中学数学试题已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2【1】求an bn的通项公式【2】令数列cn满足cn=an乘bn,求数列cn的前n项和Tn.
https://www.ouer.net/shuxue/nzwna.html - 2021-06-28 01:53:46 - 数学作业答案高一一道数列求和的问题已知数列{an}满足 an=n+1(n是奇数) an=2^n(n是偶数),数列{an}的前n项和为Sn,求Sn.an=n+1(n是奇数) an=2^n(n是偶数),作为两个数列来求
https://www.ouer.net/chuzhongshuxue/rkw0.html - 2022-10-04 04:01:33 - 中学数学试题高二数数列学题数列{an}的前n项和为Sn,a1=1,a(n+1)=2Sn(n∈N*)(1)求数列{an}的通项公式an;(2)求数列{n·an}的前n项和Tn过程详细谢谢、另:a(n+1) 括号内为下标
https://www.ouer.net/chuzhongshuxue/rd9v.html - 2022-10-04 13:07:57 - 中学数学试题4道高二数学数列题,谢谢回答^.^~1.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10)=?
https://www.ouer.net/zati/h84f.html - 2022-06-20 17:09:27 - 中学考试杂题已知等差数列{an}中,a1=1,a3=-3.数列{an}的前n项和Sn.(1)求数列{an}的通项公式(2)若Sk=-35,求k的值..(1)由题意可得数列的公差d=a3−a13−1=-2,故数列{an
https://www.ouer.net/chuzhongshuxue/dcs2.html - 2022-08-13 07:32:13 - 中学数学试题数列~计算数列{an}前几项和为Sn,{bn}前几项和为Tn,{an},{bn}为等差数列,若Sn/Tn=2n+1/n,求an/bn谢谢了.
https://www.ouer.net/chuzhongshuxue/s5h4.html - 2022-10-15 18:35:05 - 中学数学试题等差数列前N项和公式等差数列前N项和公式.
https://www.ouer.net/shuxue/nfn1s.html - 2021-07-14 07:06:49 - 数学作业答案25 6 19 7 12 8是什么数列. 交叉递进等差数列.25、19、12之间的差分别为6、7、8,二次等差数列,下个数是4
https://www.ouer.net/shuxue/nf62n.html - 2021-07-16 21:10:48 - 数学作业答案数列数学题:在数列{n}中,a1=2,an=17,Sn=209,求n和d..
https://www.ouer.net/shuxue/w103.html - 2021-05-05 23:48:01 - 数学作业答案已知数列an是等差数列,其前n项和为Sn,已知a3=-13,S9=-45,(1)求数列{an}的通项公式,(2)求数列{an绝对值}的前10项和T10.(1)S9=9a5=-45a5=-5d=(a5-a3
https://www.ouer.net/chuzhongshuxue/reza.html - 2022-10-09 17:56:43 - 中学数学试题高中数列求通项已知数列 2a1+2^2a2+2^3a2+2^4a4+…+2^nan=n 求数列an的通项公式 若bn=n/an 求数列bn的前n项和.因为2a1+2^2a2+2^3a2+2^4a4+…+
https://www.ouer.net/chuzhongshuxue/u951.html - 2022-10-24 10:58:14 - 中学数学试题已知数列的通项公式An=n^2-5n-14,n∈N+,1:52是这个数列的第几项2.这个数列的第几项最小3.这个数列前几项的和最小.1.令an=n²-5n-14=52 即:n²-5n
https://www.ouer.net/chuzhongshuxue/x6b8.html - 2022-11-15 07:36:10 - 中学数学试题证明:数列{an}为等差数列的充要条件是数列{an}的前n项和为sn=an²+bn(其中啊a,b为常数).证明:充分性:sn=an²+bnsn-1=a(n-1)²+b(n-
https://www.ouer.net/chuzhongshuxue/vwx1.html - 2022-10-28 21:53:39 - 中学数学试题已知数列an,bn中,an=lg(3^n)—lg(2^(n+1)),bn=a3n,那么数列是否是等差数列?.
https://www.ouer.net/chuzhongshuxue/x6wv.html - 2022-11-15 09:11:56 - 中学数学试题数列是首项a1=4的等比数列,且S3,S2,S4成等差数列若bn=log2|an|,设Tn为数列{1/(bn*b(n+1)}的前n项和,若Tn≤λb(n+1)对一切n∈N+恒成立,求实数λ的最小值..1
https://www.ouer.net/chuzhongshuxue/c55d.html - 2022-10-01 03:57:04 - 中学数学试题数列{an}满足a1=2,a2=5,a(n+2)-3a(n+1)+2an=0.(1)bn=a(n+1)-2an,判断{bn}是什么数列.(2)求数列{an}的通项公式.(3)求数列{an}的前n项和Sn
https://www.ouer.net/chuzhongshuxue/mhb.html - 2022-02-23 14:28:07 - 中学数学试题已知数列{an}满足an+an+1=2n+1(n∈N*),求证:数列{an}为等差数列的充要条件是a1=1..充分性:∵an+an+1=2n+1,∴an+an+1=n+1+n,即an+1-(n+1)=-
https://www.ouer.net/chuzhongshuxue/feue.html - 2022-09-25 02:34:51 - 中学数学试题已知数列{an}得前n项和为sn=an^2+bn(a,b为常数且a不等于0)求证数列{an}是等差数列.sn=an^2+bns(n-1)=a(n-1)^2+b(n-1)两式作差,由:sn-s(n-1)=
https://www.ouer.net/chuzhongshuxue/eeu.html - 2022-02-23 08:51:06 - 中学数学试题在数列an中,a1=1 3an乘an-1+an-an-1=0(n≥2,n属于正实数)证明数列an分之1是等差数列.3an乘an-1+an-an-1=0把这个式子两边同时除以an*an-1.
https://www.ouer.net/chuzhongshuxue/dcku.html - 2022-08-13 00:14:07 - 中学数学试题等差数列{An}的公差为-2,且a1,a3,a4成等比数列,(1)求数列{An}的通项公式.公差d=-2,则:a3=a1+2d=a1-4,a4=a1+3d=a1-6,又:(a3)²=(a1)×
https://www.ouer.net/chuzhongshuxue/brb5.html - 2022-09-13 09:06:05 - 中学数学试题已知数列an是等比数列,前n项和为Sn,若S3,S9,S6成等差数列,求a2,a8,a5成等差数列.2S9=S3+S62a1(1-q^9)/(1-q)=a1(1-q^3)/(1-q)+a1(1-q^6)
https://www.ouer.net/chuzhongshuxue/e8e.html - 2022-02-23 07:04:18 - 中学数学试题已知公差不为零的等差数列的第1.4.13项啥好是某等比数列的第1.3.5项,那么该等比数列的公比为.这个对称数列是{a(n)},公差是d则:a1、a4=a1+3d、a13=a1+12d是某个等比数列的第一
https://www.ouer.net/chuzhongshuxue/rm3h.html - 2022-10-10 04:17:06 - 中学数学试题数列 (14 15:6:39)项数为奇数的等差数列,其奇数项的和为44,偶数项的和为33,求该数列的项数及中间项.中间项为44-33=11若中间项为奇数项则该数列共有33/11*2*2+1=13项若中间项为偶数项则该数列共有
https://www.ouer.net/chuzhongshuxue/namd.html - 2022-02-26 01:34:10 - 中学数学试题已知数列{an}的通项公式,判断它是否为等比数列 an=3的n次方.a(n+1)/an=3^(n+1)/3^n=3公比是3的等比数列
https://www.ouer.net/chuzhongshuxue/hv9.html - 2022-01-24 13:46:10 - 中学数学试题一道高中数列题已知数列{An}的前三项与数列{Bn}的前三项相同,且a1+2a2+2²a3+……+2的n次方an=8n对任意n∈N*都成立,数列{bn+1-bn}是等差数列(1)求数列{an}
https://www.ouer.net/shuxue/nb314.html - 2020-11-23 11:44:43 - 数学作业答案已知数列1,根号3,根号5,根号7,.,则该数列的通项公式是. an=√2n-1
https://www.ouer.net/shuxue/0mek.html - 2021-05-11 23:12:37 - 数学作业答案设数列{an}的前n项和Sn=n2,数列{bn}满足bn=anan+m(m∈N*).(Ⅰ)若b1,b2,b8成等比数列,试求m的值;(Ⅱ)是否存在m,使得数列{bn}中存在某项bt满足b1,b4,bt(
https://www.ouer.net/chuzhongshuxue/fz0k.html - 2022-09-18 21:23:47 - 中学数学试题问问在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列通项公式{an}.因为a1=2,b1=4且an,bn,an+1成等差数列,即2、4
https://www.ouer.net/chuzhongshuxue/z267.html - 2022-05-03 06:00:12 - 中学数学试题设数列{an}的前n项和Sn=n2,数列{bn}满足bn=anan+m(m∈N*).(Ⅰ)若b1,b2,b8成等比数列,试求m的值;(Ⅱ)是否存在m,使得数列{bn}中存在某项bt满足b1,b4,bt(
https://www.ouer.net/zati/ka4c.html - 2022-06-27 07:48:46 - 中学考试杂题数列就是定义为正整数集N^+上的一个函数,而摆动数列:1,-1,1,-1,……中为什么还有负数?数列就是定义为正整数集N^+上的一个函数,而数列:1,-1,1,-1,……中为什么还有负数?.
https://www.ouer.net/zati/h9sk.html - 2022-06-22 00:13:44 - 中学考试杂题1.已知{an}是各项均为正数的等比数列,{根号下an}是等比数列吗?为什么?
https://www.ouer.net/shuxue/e179.html - 2021-06-15 05:21:42 - 数学作业答案等差数列的公差可不可以为零?那等比数列呢?.当然可以,公差为零是常数列
https://www.ouer.net/chuzhongshuxue/nkrf.html - 2022-03-05 16:53:13 - 中学数学试题帮我解一道等差数列的题,已知数列前n项和公式为Sn=n^2-25n+2.
https://www.ouer.net/shuxue/803a.html - 2021-06-08 01:53:14 - 数学作业答案-1 0 4 22 ( ) 帮我解数列-1 0 4 22 ( )帮我解数列.2*(-1)+2=0 3*0+ 4=4 4*4+ 6=22 下一项:5*22+8=118
https://www.ouer.net/chuzhongshuxue/rdfr.html - 2022-10-04 09:02:11 - 中学数学试题设等差数列an的公差为d,若数列{2^(a1an)}为递减数列,则:A d>0 B d0 D a1d.幂函数f(x)=2的x次方是在定义域R上是增函数,由题意可知数列{2^(a1an)}是递减函数a1an
https://www.ouer.net/zati/h3se.html - 2022-06-12 14:59:44 - 中学考试杂题常值数列有极限吗据说数列1,-1,1,-1,1,-1,1,-1,1,-1……是发散的那么常数数列呢?.有极限 就是那个常数值1,1,1,1,1,1,1,1,1,1……的极限就是1
https://www.ouer.net/chuzhongshuxue/bzhz.html - 2022-09-09 16:23:33 - 中学数学试题已知数列A={3,5,9,15,23,33},各项之差成等差数列,求此数列的通项公式和前N项的和..
https://www.ouer.net/shuxue/39nv.html - 2021-05-23 16:19:02 - 数学作业答案公差不为0的等差数列{an}中,a1=2,且a1,a3,a7成等比数列.(1)求数列{an}的通项公式(2)若数列{bn}的前n项和为Sn,且nanbn=1,求证:Sn.(1)an=n+1(2)b[n]
https://www.ouer.net/chuzhongshuxue/c543.html - 2022-10-01 03:47:50 - 中学数学试题已知Sn为数列{bn}的前n项和,b1=1.且满足2bn/(bnSn-Sn^2)=1(n大于1)(1)证明:数列{1/Sn}成等差数列;(2)求数列{bn}的通项公式..把bn=S[n]-S[n-1]代入
https://www.ouer.net/chuzhongshuxue/us8r.html - 2022-10-20 15:25:02 - 中学数学试题