首页 > 中学数学试题 > 题目详情
几道高二数列的题1,已知数列a(n)首项为a(1)=2/3 ,a(n+1)=2a(n)/a(n)+1 ,n=1,2,3.
题目内容:
几道高二数列的题
1,已知数列a(n)首项为a(1)=2/3 ,a(n+1)=2a(n)/a(n)+1 ,n=1,2,3.
(1),证明{1/a(n)-1}是等比数列.(2),求数列{n/a(n)}的前n项和S(n) .
2,已知数列{a(n)} ,a(1)=1 ,且a(n)=3a(n-1)-2n+3 ,n=2,3,4.
(1) ,证明{a(n)-n}是等比数列 .(2) ,求{a(n)}的前(n)项和S(n) .
3 ,已知数列{a(n)}的前n项和为S(n),且满足S(n+1)=2S(n)-n+3,N属于非零自然数 ,且a(1)=3 .
求 a(n)通项公式 .
几道高二数列的题
1,已知数列a(n)首项为a(1)=2/3 ,a(n+1)=2a(n)/a(n)+1 ,n=1,2,3.
(1),证明{1/a(n)-1}是等比数列.(2),求数列{n/a(n)}的前n项和S(n) .
2,已知数列{a(n)} ,a(1)=1 ,且a(n)=3a(n-1)-2n+3 ,n=2,3,4.
(1) ,证明{a(n)-n}是等比数列 .(2) ,求{a(n)}的前(n)项和S(n) .
3 ,已知数列{a(n)}的前n项和为S(n),且满足S(n+1)=2S(n)-n+3,N属于非零自然数 ,且a(1)=3 .
求 a(n)通项公式 .
1,已知数列a(n)首项为a(1)=2/3 ,a(n+1)=2a(n)/a(n)+1 ,n=1,2,3.
(1),证明{1/a(n)-1}是等比数列.(2),求数列{n/a(n)}的前n项和S(n) .
2,已知数列{a(n)} ,a(1)=1 ,且a(n)=3a(n-1)-2n+3 ,n=2,3,4.
(1) ,证明{a(n)-n}是等比数列 .(2) ,求{a(n)}的前(n)项和S(n) .
3 ,已知数列{a(n)}的前n项和为S(n),且满足S(n+1)=2S(n)-n+3,N属于非零自然数 ,且a(1)=3 .
求 a(n)通项公式 .
本题链接: